Availability Prediction Methods for Terrestrial Free-Space- Optical Link Under Tropical Climate

نویسندگان

  • Ahmed Basahel
  • Md. Rafiqul Islam
  • Mohamed Habaebi
  • Suriza Ahmad
چکیده

Received Jan 11, 2018 Revised Mar 8, 2018 Accepted Mar 22, 2018 Free-space optical (FSO) links provide high speed point-to-point wireless communication, but its availability can easily be affected by weather conditions. In heavy rainfall regions, FSO links are relatively sensitive to rain. Availability prediction of FSO is indispensable part, especially in tropical areas. In this paper, methods to predict FSO link availability are presented. The overall performance of FSO link is described in terms of the availability that can be achieved over anticipated link distance. The availability prediction methods demonstrated for an FSO link ranges up to 5 km. The availability prediction methods are based on long-term statistics of atmospheric attenuations and FSO link budget under tropical climate condition. In tropical regions, for a terrestrial FSO link, carrier class availability can be achieved over a few hundred meters only; whereas enterprise class availability can be achieved over a few kilometers link distances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental adaptive networks implemented by free space optical (FSO) communication

The aim of this paper is to fully analyze the effects of free space optical (FSO) communication links on the estimation performance of the adaptive incremental networks. The FSO links in this paper are described with two turbulence models namely the Log-normal and Gamma-Gamma distributions. In order to investigate the impact of these models we produced the link coefficients using these distribu...

متن کامل

Modeling of RF Waves in Free Space Optical Communication System Under Gamma-Gamma Turbulent Channel Effect

In this paper, an enhancement design of communication system using optical radio frequency (RF) waves in free space optical communication (FSO) system is presented. To our knowledge, it is the first time that the effect of Gamma-Gamma turbulent channel model on the performance of the proposed system is analyzed and simulated. To obtain an optical communication system with good performance and h...

متن کامل

Propagation Characteristics and Availability Performance Assessment for Simulated Terrestrial Hybrid 850 nm/58 GHz System

Results of a propagation study on a free space optical link at 850 nm on a path 853 meters long and on a parallel 58 GHz radio link obtained over a 3-year period of observation are presented. The cumulative distributions of attenuation due to all of the hydrometeors combined as well as due to individual hydrometeors were obtained for both paths. The availability performances of the FSO link, th...

متن کامل

Characterization of Fog and Snow Attenuations for Free-Space Optical Propagation

Free Space Optics (FSO) is now a well established access technology, better known for its robustness in transmitting large data volumes in an energy efficient manner. However the BER performance of a FSO ground-link is adversely affected by cloud coverage, harsh weather conditions, and atmospheric turbulence. Fog, clouds and dry snow play a detrimental role by attenuating optical energy transmi...

متن کامل

PDF Estimation and Liquid Water Content Based Attenuation Modeling for Fog in Terrestrial FSO Links

Terrestrial Free-space optical communication (FSO) links have yet to achieve a mass market success due to the ever elusive 99.999% availability requirement. The terrestrial FSO links are heavily affected by atmospheric fog. To design systems which can achieve high availability and reliability in the presence of fog, accurate and better models of fog attenuation need to be developed. The current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018